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LETTER TO THE EDITOR

Simultaneous quantization of edge and bulk Hall conductivity
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Abstract. The edge Hall conductivity is shown to be an integer multiple ofe2/hwhich is almost
surely independent of the choice of the disordered configuration. Its equality to the bulk Hall
conductivity given by the Kubo–Chern formula follows fromK-theoretic arguments. This leads
to quantization of the Hall conductance for any redistribution of the current in the sample. It is
argued that in experiments at most a few per cent of the total current can be carried by edge states.

Soon after the discovery of the integer quantum Hall effect (QHE) [19], several geometric
interpretations of the observed quantization of the Hall conductance of a two-dimensional
electron gas were put forward in the framework of non-relativistic quantum mechanics.
Laughlin proposed an adiabatic Gedanken experiment in order to calculate the Hall
conductance [15]; Halperin and later on Büttiker studied the conduction by edge channels
[10,13]; while Thoulesset al investigated the Hall conductivity as given by the Kubo formula
[20]. Laughlin’s argument was rigorously analysed by Avronet al even for multiparticle
Hamiltonians and in the presence of a disordered potential [3–5]. Bellissard, recently joined
by van Elst and Schulz-Baldes, generalized the TKN2 work in order to show quantization of the
Hall conductivity also in the presence of a disordered potential as long as the Fermi level lies
in a region of dynamically localized states [6,7], a result that was also obtained by Aizenman
and Graf [1]. All these beautiful mathematical approaches show that the Hall conductance and
conductivity, respectively, have a deep geometrical meaning and allow us to calculate them
as an index of a certain Fredholm operator. In [1, 5, 7, 20], the edges of the sample play no
particular role.

Recently, there has been a revived interest in edge states of magnetic Schrödinger operators.
Hatsugai linked an edge state winding number to the Chern numbers for Harper’s equation
with rational flux [14]. Akkermanset al introduced spectral boundary conditions giving rise to
a linear dispersion relation for edge states and a natural setting for the Laughlin wavefunction
as a many-body bulk state [2]. The stability of the absolutely continuous spectrum associated
to edge states under the perturbation with a random potential was studied by several authors
using Mourre’s positive commutator estimates [8,12,16].

Our first main result is a rigorous proof of the edge current quantization in the sense
of Halperin for a discrete magnetic half-plane operator containing a disordered potential;
notably we show quantization of what we call the edge Hall conductivity. Our second
mathematical result is its equality to the bulk Hall conductivity as calculated by the Kubo–
Chern formula [6, 7, 20]. The proof of this equality reveals a deep connection between the
plane and edge geometry as it is based on Bott periodicity, the heart ofK-theory [9]. We still
need a gap in the spectrum of the plane operator, but a generalization to a region of dynamically
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localized states is under investigation. Using these results, we reproduce Halperin’s argument
explaining why the Hall conductance of a Hall bar is quantized no matter what proportion of
the current is actually carried by the edge or the bulk states, respectively. Finally, we present
a simple theoretical reasoning showing that in a typical experimental situation at most 10% of
the current flows by edge states.

For the definition of the edge Hall conductivity, we consider a gas of charged independent
particles in the (discrete) upper half-plane0 = {(x, y) ∈ Z2|y > 0} submitted to a
perpendicular magnetic fieldB. Let Ĥ denote the one-particle Hamiltonian acting on`2(0).
All operators on the half-plane space carry a hat from now on. Typically,Ĥ is the projection
onto `2(0) of an operatorH = HH + V acting on`2(Z2) whereHH is Harper’s magnetic
Hamiltonian andV is the sum of a periodic and a disordered potential. As the edge of the
plane intercepts the cyclotron orbits, there may be a net electric current along the edge. In
order to calculate it, letJ be a spectral interval lying in a gap of the plane HamiltonianH . Such
an interval typically contains extended edge states ofĤ [14], even in the presence of a weak
disordered potential [8,12,13,16]. If̂PJ is the spectral projection of̂H onJ , then the electric
edge current in thex-direction carried by the eigenstates inJ is equal toqT̂ (P̂J∇x(Ĥ ))/h̄.
Hereq is the charge of the particles,∇x(Ĥ ) = i[X, Ĥ ] is the current operator given by the
commutator of the Hamiltonian and theX-position operator and, finally, the traceT̂ = Try Tx
is the trace per unit volume [6,7] in thex-direction and the usual trace in they-direction. Now
given an energyE in a gap of extended states ofH , we define

σ e⊥(E) =
q2

h̄
lim
J→{E}

1

|J | T̂ (P̂J∇x(Ĥ )). (1)

Because an infinite half-plane is a typical model for a mesoscopic volume with a boundary,
we callσ e⊥(E) the edge Hall conductivity rather than the edge Hall conductance just as the
bulk Hall conductivity is calculated with an infinite planar model for a mesoscopic volume,
while the conductance is always associated to a finite macroscopic sample. Both the edge
and the bulk Hall conductivity are idealized quantities for which clear mathematical results
can be obtained. Further, we note that one could define the edge Hall conductivity for a strip
geometry, but this would not lead to quantization because of backscattering, that is tunnelling
from upper to lower edge states [10].

Before starting the more mathematical analysis, let us consider the Harper Hamiltonian
HH on `2(Z2) in order to familiarize ourselves with the notion of edge Hall conductivity.
It is defined by the finite-difference equation(HHψ)n,m = ψn+1,m + ψn−1,m + e2π iϕψn,m+1 +
e−2π iϕψn,m−1 and we suppose here that the magnetic flux per unit cell is rationalϕ = p/q. Then
the spectrum ofHH is known to be a band spectrum. To analyse the half-plane operatorĤH
on`2(0), we use the translation invariance in thex-direction to make a Bloch decomposition
ĤH =

∫ ⊕
[−π,π)

dkx
2π ĤH (kx) whereĤH (kx) is a Jacobi matrix oǹ2(N). The spectrum of each

ĤH (kx) contains the bands of the corresponding periodic operatorHH(kx) on`2(Z), but there
may now also be a Dirichlet eigenvaluêEl(kx) in each gap ofHH(kx) [14]. Upon varying
kx , the eigenvalues form a finite number of continuous curves the endpoints of which touch
the adjacent Bloch bands ofHH (see figure 1). To each of these so-callededge channelswe
associate a weight +1 (respectively−1) if the Dirichlet eigenvalues of the channel vary from
the upper towards the lower (respectively lower to upper) adjacent Bloch band askx increases.
Let sn be the sum of all these weights in thenth gapGn of HH . Then the edge current carried
by the edge states in an intervalJ contained inGn is equal tosn|J |q2/h because

T̂ (P̂J∇x(ĤL)) =
∑
l

∫ π

−π
dkx χJ (Êl(kx))

dÊl (kx)

dkx
.
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+π−π x

E

k Figure 1. Schematic representation of the spectrum ofĤH in a given
gap ofHH : the solid curves are the Dirichlet bands and the shaded
regions are the Bloch bands.

HereχJ denotes the indicator function onJ . This implies thatσ e⊥(E) = snq
2/h for all

E ∈ Gn. Hatsugai, in a beautiful paper [14], has shown thatsn is equal to the sum of the Chern
numbers of then bands belowGn. This sum multiplied byq2/h is the bulk Hall conductivity
σb⊥(E) [20]. Hence we obtainσ e⊥(E) = σb⊥(E) for all energies in the gaps ofHH , which is a
particular case of theorem 2 below. Note that the equivalent result for the Landau Hamiltonian
simply states that there aren edge channels in the gap between thenth and(n + 1)th Landau
bands [13].

Now we would like to add a disordered potentialV . First of all, ifV is sufficiently small,
sufficiently large gaps ofHH remain open forH = HH + V . It follows further from Mourre
estimates on the current operator that the spectrum remains absolutely continuous in the gaps
ofH for a weak potential whenever the current of the edge states ofĤH has a definite sign [8].
Whereas the latter condition is always satisfied for the Landau Hamiltonian, it may not hold in
the discrete case (cf figure 1 and the numerical studies in [14] where edge channels having edge
states with group velocity both to the left and to the right are exhibited). In this situation, the
positive commutator methods cannot be applied. Nevertheless, we shall be able to show that
the current remains constant. However, we cannot deduce that the spectrum is still absolutely
continuous once a small perturbation is added.

In order to treat the situation with broken translation invariance, we parallel Bellissard’s
non-commutative generalization of the TKN2 work [6, 7]. No particular structure of the
HamiltonianH on`2(Z2) is needed except for its homogeneity in the sense of [6,7]. The main
mathematical tool in [6,7] is theC∗-algebraA of homogeneous observables in the plane. It has
the structure of a crossed product algebraA = C(�)× Zx × Zy associated to the dynamical
system given by the magnetic translationsZx andZy in thex- andy-direction, respectively,
acting on the compact space of disorder configurations� which is the hull ofH . Each such
configurationω ∈ � induces a representationπω of the observable algebraA on physical
Hilbert spacè 2(Z2). There exists anH ∈ A such thatπω(H) is precisely the Hamilton
operator with disordered configurationω ∈ �. We now consider the Toeplitz extensionT (A)
with respect to the crossed product structure ofZy [18]. Its physical representations give
operators in the half-plane. This naturally gives rise to an exact sequence ofC∗-algebras [18]:

0→ E i→ T (A) π→ A→ 0. (2)

HereE is theC∗-algebra of observables localized near the edgey = 0; it is isomorphic to
theC∗-tensor product ofC(�) × Zx with the compact operatorsK. The exact sequence (2)
induces two six-term exact sequences, one forK-theory groups [9,18] and one for the cyclic
cohomology groups [17], and we shall use their duality [17] to prove the equality of bulk and
edge Hall conductivities.

Let us illustrate these notions for the Harper Hamiltonian with arbitrary fluxϕ, but without
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a further potential. TheC∗-algebraA is then the rotation algebra generated by the two magnetic
translationsUx andUy satisfying the commutation relationUxUy = e2π iϕUyUx . Thus in this
caseC(�) ∼= C. The Toeplitz extension is generated byÛx and Ûy satisfying the same
commutation relation, but, whilêUx remains unitary,Ûy is now only an isometry satisfying
Û ∗y Ûy = 1− 50 where50 is the projection on the states supported by the boundary of0.

Finally, E is isomorphic to the tensor product ofC∗(Ûx) ∼= C(S1) with K. The maps in (2)
are the inclusioni and the projectionπ given byπ(Ûx,y) = Ux,y .

The tracesTx,y of physical representationsπω of an observable are almost surely
independent ofω with respect to any given invariant and ergodic measureP on� [7]. Hence
they allow to define traces on the observable algebrasA andE . Now the definition (1) of the
edge Hall conductivity remains valid as long as the projectionsP̂J are in the Schatten ideal
of traceclass operators with respect toT̂ for J sufficiently close to{E}. This is possible even
thoughP̂J is only an element of the bicommutantE ′′, the enveloping von Neumann algebra.
Now the crucial observation is that the current of the edge states in an intervalJ lying in a gap
G of the spectrum ofH can be calculated using Duhamel’s formula and taking into account
elementary properties of projections:

T̂ (P̂J∇x(Ĥ )) = |J |
2π i
T̂ ((Û(J )∗ − 1)∇x Û(J )) (3)

where

Û(J ) = exp

(
2π iP̂J

Ĥ − E′
|J |

)
E′ = inf (J ). (4)

Although Û(J ) is built out of the operatorŝPJ and Ĥ which are not localized near the
boundary and not even in theC∗-algebraT (A), we can show that̂U(J ) − 1 is an element
of the edge algebraE by using the exponential map of the six-term exact sequence ofK-
groups [9] associated to the exact sequence (2). More precisely, the image under the exponential
map of the class [Pµ]0 ∈ K0(A) associated to the Fermi projectionPµ is equal to the class
[Û(J )]1 ∈ K1(E) whenever the Fermi levelµ is in J . In fact,Pµ is equal to the continuous
function of the Hamiltonianf (H) = PE′ − PJ (H −E′)/|J |. Now a self-adjoint lift ofPµ is
given byf (Ĥ ). From [P̂E′ , P̂J ] = 0 thus follows

exp([Pµ]0) = [exp(−2π if (Ĥ ))]1 = [Û(J )]1. (5)

Finally, we note that continuously varying the boundaries ofJ to those ofG leads to a homotopy
from Û(J ) to Û(G). Thus (4) actually associates toG a class in theK-groupK1(E).

It now follows from Connes’ non-commutative geometry [11] that1
i T̂ ((Û

∗ − 1)∇x Û) is

an integer for any unitarŷU in (a suitable subalgebra of)Ẽ . Actuallyζ1(Â, B̂) = 1
i T̂ (Â∇x(B̂))

defines a 1-cocycle onE becausêT is invariant under∇x . With some calculatory effort, this
cocycle can be linked to the standard 1-cocycle of the Fredholm module(C1 ⊗ E0, πω ⊕
πω, `

2(0)⊕ `2(0), σ2⊗ iX/|X|) whereE0 is the inE dense∗-algebra of operators with finite
support in they-direction andC1 a two-dimensionalZ2-graded Clifford algebra in Mat(C2),
πω ⊕ πω is a doubling of the physical representation on the doubled physical Hilbert space
`2(0) ⊕ `2(0) and the Dirac phase is constructed from the Pauli matrixσ2 and the position
operatorX. Hence the odd index theorem [11, p 291], a density and homotopy argument
linking Û(G) to an element inE0 [11, p. 249] and a treatment of the disorder configuration
along the lines of [7] imply the following result.

Theorem 1. Suppose thatG ⊂ R is a spectral gap of the plane operatorH acting on`2(Z2).
Let5 denote the projection from̀2(Z⊗N) onto`2(N⊗N) and letÛ(G) constructed by(4)
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from P̂G. Then forP-almost everyω ∈ �, the operator5πω(Û(G))5 is a Fredholm operator
on`2(N⊗ N) with constant index and for allE ∈ G

σe⊥(E) =
q2

h
Ind(5πω(Û(G))5).

We remark that the index can also be written as a relative index of a pair of projections as
defined by Avronet al [5], notably as the relative index of5 andπω(Û(G))5πω(Û(G))∗.

Using the exact sequence (2), we now link this edge theory to the bulk theory as developed
in [7]. From the above it follows thatσ e⊥(E) actually results from a pairing [11] between
[Û(G)]1 ∈ K1(E) with the odd cyclic cohomology class defined by the 1-cocycleζ1 given
above. Similarly, the bulk Hall conductivityσb⊥(µ) for a Fermi levelµ in a gap ofH comes
from a pairing of the class of the Fermi projection [Pµ]0 ∈ K0(A) with the 2-cocycleζ2 over
A defined byζ2(A,B,C) = 2π iTxTy(A∇xB∇yC − A∇yB∇xC) [7]:

σ e⊥(E) = 〈ζ1, [Û(G)]1〉 σb⊥(µ) = 〈ζ2, [Pµ]0〉.
We showed above that [Û(G)]1 is the image of [Pµ]0 under the exponential map ofK-theory.
Next one can verify that the 1-cocycleζ1 overE is mapped to the 2-cocycleζ2 overA under the
mapping # defined in [17, section 8]. For this map, the duality theorem of the pairing holds,
notably〈ζ1, exp([P ]0)〉 = 〈#ζ1, [P ]0〉 for any projectionP ∈ A [17, section 12]. Hence we
obtain the following theorem.

Theorem 2. σ e⊥(E) = σb⊥(E) for all energiesE in a spectral gap ofH .

At this point, let us comment on the generalizations of these results. Just as one does
not need the existence of a gapG in order to prove the quantization of the bulk Hall
conductivity [1,7], it is likely that theorems 1 and 2 hold under the weaker hypothesis that the
intervalG only contains dynamically localized states ofH in the sense of [7]. Furthermore,
the whole theory should have a continuous counterpart for a disordered Landau Hamiltonian.
As both of these results ask for more lengthy and detailed proofs, they will be the subject of a
forthcoming publication.

We now sketch how the above results lead to the desired explanation of a QH regime
measurement in a QH bar. Following Halperin [13], we suppose that the measured Hall
voltageV⊥ across the bar is the sum of the the potential dropV b due to an electrostatic field
and the (relative) chemical potential difference1µ/q = (µu − µl)/q between the upper and
the lower edge. Furthermore, let the interval [µl, µu] be contained in a gapG ofH (the above
generalization only needs the weaker condition thatG is dynamically localized). In linear
response approximation, the electric field leads to a bulk currentI b = σb⊥V b. Now both the
upper and the lower edge may carry a current. In the absence of backscattering, we can treat
them as two separate half-plane problems. But actually the lower edge can be seen as an upper
edge with reversed magnetic field, which is equivalent to a time reversal. This changes the
orientation of its current so that the net current carried by both edges comes from the upper edge
states with energies in [µl, µu]. From the above thus results a net edge currentI e = σ e⊥1µ/q.
Hence the Hall conductance of the sample given by the quotient of the total currentI = I e +I b

and the voltageV⊥ is equal to the integerσ e⊥ = σb⊥ for any value ofV b/V⊥.
An interesting question which has led to considerable theoretical and experimental work

(see [21] and references therein) is how much current is carried by either edge or bulk states in
a typical QH experiment. Let us argue that at most 10% of the current is carried by the edge
states. This agrees with recent experimental studies [21]. For the edge current of [µl, µu] to
be equal to an integer times1µ, the difference of chemical potentials1µ clearly has to be
smaller than the energetic distance ¯hωc(1−p) (hereωc is the cyclotron frequency so that ¯hωc
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is the distance between two Landau levels, andp is the quotient of the energetic width of the
plateaux and ¯hωc). Hence the proportion of edge current has to be smaller than1µ/pV⊥. In
order to estimate this condition and the temperature corrections below, we use the experimental
data from [19, ch 2] for theσ⊥ = 4 plateau:B ≈ 6 T, V⊥ ≈ 170 mV andT ≈ 1.2 K and
p ≈ 0.6. Using the data for the effective electron mass (m∗ ≈ 0.07me) and the electron charge,
we obtainh̄ωc ≈ 48 meV and a maximal proportion of edge currents of 10%.

We acknowledge support by the SFB 288.

References

[1] Aizenman M and Graf G M 1998J. Phys. A: Math. Gen.316783
[2] Akkermans E, Avron J E, Narevich R and Seiler R 1998Euro. Phys. J.B 1 117
[3] Avron J E, Seiler R and Simon B 1983Phys. Rev. Lett.5151
[4] Avron J E and Seiler R 1985Phys. Rev. Lett.54259
[5] Avron J E, Seiler R and Simon B 1994Commun. Math. Phys.159399
[6] Bellissard J 1987Proc. of the Bad Schandau Conf. on Localizationed Ziesche and Weller (Leipzig: Teubner)
[7] Bellissard J, van Elst A and Schulz-Baldes H 1994J. Math. Phys.355373
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